
The Zones of Proximal Flow: Guiding Students Through a
Space of Computational Thinking Skills and Challenges

Ashok Basawapatna
University of Colorado, Boulder

Department of Computer Science
Boulder, CO 80303
720-838-5838, 001

basawapa@colorado.edu

Alexander Repenning
University of Colorado, Boulder

Department of Computer Science
Boulder, CO 80303
303-492-1349, 001

ralex@cs.colorado.edu

Kyu Han Koh
University of Colorado, Boulder

Department of Computer Science
Boulder, CO 80303

303-492-1349
kohkh@colorado.edu

Hilarie Nickerson
University of Colorado, Boulder

Department of Computer Science
Boulder, CO 80303

303-492-1349
hnickerson@colorado.edu

ABSTRACT
This paper presents a novel pedagogical framework, entitled the
Zones of Proximal Flow, which integrates Vygotsky’s Zone of
Proximal Development theory with Csikszentmihalyi’s ideas
about Flow. Flow focuses on the individual– an individual is in
Flow when challenges are balanced with skills. The Zone of
Proximal Development, on the other hand, brings in a social
learning aspect focusing on a student’s ability to learn concepts
with external support. From our research experiences bringing
game and simulation design into middle school classrooms, we
attempt to provide students with appropriate challenges using a
project-first based approach that aims to keep students in Flow.
The project-first approach employs inquiry based scaffolding to
guide students, with appropriate support by their teachers, through
Vygotsky’s Zone of Proximal Development, back in to
Csikszentmihalyi’s state of Flow for an ideal learning experience.
We call this space the Zones of Proximal Flow. Data indicate that
the Zones of Proximal Flow approach works, keeping classrooms
engaged in the act of game design and enabling students to
advance to more complex program creations.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and Information
Science Education

General Terms
Management, Measurement, Performance, Human Factors

Keywords
Zone of Proximal Development, Flow, Zones of Proximal Flow,
Computational Thinking, Computational Thinking Patterns,
Simulations, Scalable Game Design, Computer Science Education

1. INTRODUCTION
At present time, much research into educational end-user
programming tools focus on giving students, with little to no prior
programming experience, the skills necessary to rapidly create
games [1]. When compared to traditional programming languages,
such as C++ or Java, these tools provide students with a means to
make sophisticated graphical games immediately by employing
drag and drop elements, in place of often tedious syntax that
accompany traditional programming mechanics [2]. Employing
graphical elements, students are quickly introduced to the logic of
programming; additionally, game programming has the power to
motivate students in the domain of computer science [3].

Traditional instruction, based on introducing principles-first,
where students engage in multiple semesters of theory before
undertaking interesting projects, is not compelling to students
[21]. Just as important as end-user programming tools, is the
pedagogical approach to applying these tools into the classroom
curriculum. For our purposes we have found that a project-first
approach, wherein students are motivated to gain the skills
necessary to complete the problem, facilitates student learning of
skills and the ability of classes to attempt more sophisticated
projects [21]. Furthermore, scaffolding and resources provided to
teachers and students allows for this project-first approach by
enabling students and teachers to gain additional skills, if
necessary, to face these increasingly challenging projects. While
syntactic programming is necessary to overcome frustration in
novice programmers, perhaps a much more important aspect of
computer science education is the pedagogical approach which
even has important implications for broadening participation [21].

As part of the National Science Foundation funded Scalable Game
Design Project, at the University of Colorado Boulder, we employ
two such end-user programming tools that enable rapid game and
simulation prototyping by end-users: AgentSheets [4] and its
subsequent 3D version AgentCubes [5]. One aim of these tools is
to enable the concept of low-threshold high ceiling, meaning that
students can quickly create games overcoming the barrier of entry
into programming, but also, can make increasingly sophisticated
games and simulations as they gain more programming skills. In
AgentSheets, for example, students can go from no programming
experience to creating their first game in around five hours;
subsequently, as students gain expertise, they can create complex

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ICER’13, August 12–14, 2013, San Diego, California, USA.
Copyright © 2013 ACM 978-1-4503-2243-0/13/08…$15.00.

67

high-level interactions relating to math, science, and artificial
intelligence for example [6,7]. As part of this project, over 10,000
student games and simulations have been created across the
United States [8].

The Scalable Game Design Project aims to broaden participation
among diverse sets of students from elementary school to
graduate school education. However, in addition to motivating
students through games, the Scalable Game Design approach
emphasizes giving students the necessary skills to investigate
science [9]. Empowering students with the ability to create
simulations links the Scalable Game Design process to
computational thinking learning. A quote from Len Scrogan, the
former director of Technology for the Boulder Valley School
District, makes explicit the link between game and simulation
design in terms of computational thinking. Len walked up to a
student creating space invaders through the Scalable Game Design
project and asked:

“Now that you’ve made ‘Space Invaders’, can you create a
science simulation [9].”

Unwrapping this statement begins to reveal important educational
concepts actually learned through game creation. Specifically, Mr.
Scrogan is asking how students can leverage the skills they have
acquired from game design and apply these skills to simulation
authoring. As students learn how to create games, they are
motivated to learn the programming constructs necessary to
complete the agent-interactions present in these games.
Furthermore, many of these interactions present in games, are also
present in science simulations. Through game creation, students
are actually gaining the skills necessary to create representative
systems.

Creating simulations relates closely to computational thinking.
Currently, computational thinking is defined to include the
following: problem formulation, logically organizing and
analyzing data, representing data through abstractions such as
models, automating solutions through algorithmic thinking,
implementing effective solutions optimally, and transferring the
solution to solve a wide variety of problems [10]. Furthermore,
Jeanette Wing, a major proponent of computational thinking states
that finding the right abstraction, ignoring and emphasizing
certain aspects of the real world underlies computational thinking
[11]. When creating a simulation, students must define a problem
in the real world domain. The students must abstract this problem
into the representational domain creating a model that includes the
aspects of the real world problem necessary to gain insight into a
particular problem. Finally, students experiment on the simulation
to find out information in the representational domain that can be
applied to the real world domain. The concrete link between game
programming and simulations is currently being established, for
example, in the recent National Research Council report entitled
“Learning Science Through Games and Simulations” [12].

We have done much research into the relationship between game
design and simulation creation in educational contexts. This
research has led to the development of a construct entitled
Computational Thinking Patterns [13]. Computational Thinking
Patterns are agent interactions students initially learn in game
design, but then, transfer to the creation of science simulations.
Examples of Computational Thinking Patterns include
programming one agent to collide with another agent, one agent
creating another agent, one agent tracking another agent, and one
agent transporting another agent among many others. For
example, in the game Pacman a student might program ghost

agents tracking a pacman agent; similarly in a predator/prey
simulation, a student might implement the predator agent tracking
a prey agent. A more exhaustive list and description of
Computational Thinking Patterns can be found in [7].

Previous research has shown that users can identify the necessary
Computational Thinking Patterns necessary to implement an
interaction outside of the game context and use the Computational
Thinking Patterns construct to directly create simulations [14,15].
By combining Computational Thinking Patterns, users can begin
to piece together and experiment on simulations, such as
epidemiology simulations and predator/prey simulations that
relate to their classroom curriculum.

In addition as acting as the units of transfer between games and
simulations, we have also started analyzing games and
simulations by their constituent Computational Thinking Patterns.
This method is called Computational Thinking Pattern Analysis
(CTPA) and currently, we have the ability to view the constituent
patterns students have programmed when creating a given game
or simulation [13]. Computational Thinking Pattern Analysis
allows us to compare what skills students have acquired through
game programming and identify corresponding simulations that
students can create given the mastery of these pattern
combinations [8,13]. Furthermore, Computational Thinking
Pattern Analysis can be used as an assessment tool that enables us
to match student skill with appropriate challenges within the
domain of past work.

The idea of matching skills and challenges has a rich history in
terms of pedagogy research. For example, Vygotsky’s theory
regarding the Zone of Proximal Development describes the
difference between what a learner can do with and without
external help [16]. Similarly, Csikszentmihalyi’s theory of Flow
states that people are in a completely motivated and engaged state
when the skills they have garnered match well with the challenges
they are currently undertaking [17]. For our research purposes,
implementing game and simulation projects in school classroom
curricula, the strategy we employ combines both of these theories
into an emerging space we call the Zones of Proximal Flow. In
short, our Zones of Proximal Flow strategy combines a project-
first gentle-slope approach, involving games and simulations of
increasing complexity, matched with student skill, plus added
external scaffolding to guide anxious students back into the Flow.
The remainder of this paper will describe the synthesis of the
Zones of Proximal Flow, the implementation of this strategy in
the classroom, and the results of this approach exposing students
to computational thinking through game and simulation design.

2. THE ZONES OF PROXIMAL FLOW:
CSIKSZENTMIHALYI MEETS VYGOTSKY
Educational theories regarding learning and development are
often described as if they are independent of other processes. In
reality, both classrooms and individual learners are complex
entities in which it is possible to observe evidence that supports
multiple educational theories simultaneously. During Scalable
Game Design activities, students can exhibit behaviors that are
characteristic of both Csikszentmihalyi’s notion of Flow [17],
which relates primarily to specific moments in time, and
Vygotsky’s theory of the Zone of Proximal Development [16],
which describes a student’s ability to move beyond independent
problem solving through scaffolding over extended periods of
time. Considering these two ideas led us to develop the Zones of
Proximal Flow framework to account for what we were observing.
In this section, we examine both theories in detail, explain their

68

compatibility, and view Scalable Game Design through the lens of
this combined framework.

The concept of Flow has its origins in Csikszentmihalyi’s study of
intrinsically motivated activities [18]. A high degree of immersion
in such an activity can result in an optimal experience, which
refers to feelings of firm control and coping ability during goal
pursuit while performing at the limits of one’s abilities. As an
example, intense participation in a demanding creative or athletic
endeavor can generate an optimal experience regardless of
whether the outcome is aesthetically pleasing or the activity
results in physical discomfort. Optimal experience is also
associated with a state of deep concentration; the related distortion
of the passing of time as the experience unfolds; and a notable
feeling of enjoyment, altered consciousness, or extraordinary
experience. Together, these experiential characteristics identify
the state known as Flow. An important precondition for flow is
that an individual’s level of skill must correspond well to the level
of challenge. Overly easy challenges result in relaxation or
boredom, depending on the degree of mismatch [19,20].
Similarly, challenges that are too difficult prompt vigilance or
anxiety. Figure 1 depicts Csikszentmihalyi’s early flow diagram.

Figure 1. Csikszentmihalyi’s depiction of Flow, the region
between boredom and anxiety wherein skills align with

challenges [17]

While Flow has been examined in the context of both short and
long timescales, it has most often been used to describe ‘in the
moment’ states of an individual [17,20]. In the short term, staying
in a Flow state is contingent on continuing motivation to prolong
the activity underway, which is determined by assessing the
individual–environment interaction occurring at a given moment
rather than by consulting an established structure. Concomitant
incremental improvements in performance can be observed.
Because Flow is a pleasurable state, people desire to repeat
experiences that produce it, leading to growth over the long term
both in skill and in the level of challenge to be faced. Note that
either skill or challenge increases can take the lead role at any
given point in this progression, with the other factor subsequently
rising to complement it. In formal learning environments, it has
been found that active learning promotes short-term flow and that
flow experiences predict greater persistence and achievement in
the associated activity over the long term [19].

Vygotsky’s theory of the Zone of Proximal Development (ZPD)
arose as a way of explaining how learning and development in
children are related [16]. Rejecting existing theories that
development must precede or coincide with learning, Vygotsky
instead proposed that learning itself was necessary to promote
development. From this viewpoint, the developmental level of an
individual can be measured not just in the traditional manner, by

examining current ability, but also by determining what that
individual is ready to master given appropriate assistance. The
ZPD is the area between these two levels, which “defines those
functions that… are in the process of maturation [16].” Learning
experiences aimed within the ZPD are the most useful. According
to Vygotsky, there is no developmental advantage to providing
instruction in areas of existing mastery, nor is it possible for
children to learn material that is beyond their ZPD. Figure 2
depicts the Zone of Proximal Development.

Figure 2. Zone Of Proximal Development which represents
what the learner can do with guidance, used with permission
under © CC0 1.0 Universal Public Domain Dedication

The sociocultural context in which learning occurs is a key part of
Vygotsky’s theory. Children naturally begin learning from their
parents at birth, spurring their initial development. School brings
both a more systematic approach to instruction and more
opportunities to learn from and with peers—children working
together in a group may be able to accomplish what an individual
child could manage only with a teacher’s guidance. In either case,
what starts out as an interpersonal experience promotes
development that leads to subsequent independent
accomplishment, thus shifting the ZPD. The theory’s major
themes are summed up in this brief passage from Vygotsky’s
writings:

“We propose that an essential feature of learning is that it creates
the zone of proximal development; that is, learning awakens a
variety of internal developmental processes that are able to
operate only when the child is interacting with people in his
environment and in cooperation with his peers. Once these
processes are internalized, they become part of the child’s
independent developmental achievement [16].”

Through our research approaches in the Scalable Game Design
Project, we have found that the concepts of Flow and the ZPD are
complimentary. Csikszentmihalyi emphasized the individual’s
skills establishing a hard boundary between states of Flow and
non-Flow. Furthermore, the concept of Flow does not have any
notion of social learning, or learning outside of the individual.
However, we have found that students can be in Flow, wherein
the game or simulation authoring challenges match their skill
level, but also, students might be in a state where they need
outside help in order to meet the program challenges they face.
This outside help takes the form of focused in-class instruction,
online tutorials, and peer learning among classmates. When

69

students make use of this outside help, because of the scaffolding
that exists, they are not in a state of anxiety necessarily, but rather,
in a state more akin to the Zone of Proximal Development.

Figure 3. Zones of Proximal Flow wherein ZPD is located in
between regions of Flow and anxiety

Combining Flow and ZPD we arrive at space overlaying a social
learning element to Flow. Figure 3 depicts this combined space
entitled the Zones of Proximal Flow wherein the Zone of
Proximal Development is lies between the regions of Flow and
anxiety. The question still remains how do we apply this construct
to facilitate engaged student learning trajectories? The following
section describes how the Scalable Game Design Project
implementation relates to the Zones of Proximal Flow.

3. ZONES OF PROXIMAL FLOW AND
THE SCALABLE GAME DESIGN
APPROACH
The Scalable Game Design curriculum attempts to bring computer
science education into public schools through game and
simulation design. The notion of the Zones of Proximal flow is a
framework that guides students through the challenge skills space
in a low threshold high ceiling path of increasingly sophisticated
projects. This gentle slope trajectory starts with a simple game,
such as Frogger, wherein students learn beginning Computational
Thinking Patterns like one agent colliding another agent, one
agent creating another agent, and one agent changing another
agent, and one agent tracking another agent. After students master
these patterns, students move onto more sophisticated games like
Sokoban, where they learn how to make one agent push another
agent; Centipede, where they learn how to make a group of agents
move in concert with one another; and the Sims, wherein they
learn how to make one agent track other agents in the world [6].
At any point, if game challenges do not match the student’s skills,
scaffolding is provided to support student development. These
include class instruction, tutorials that are readily available on the
Scalable Game Design wiki, in-class peer student learning,
assessment instruments that make explicit student skills obtained
through programming, and the ability to download fellow
classmates’ projects. This scaffolding is an attempt to take
students who are in the Zone of Proximal Development and bring
them back into Flow. Figure 4 depicts how the Zones of Proximal
Flow relates to the Scalable Game Design Project.

In Figure 4, the horizontal axis represents students’ computational
thinking skills, as measured by Computational Thinking Pattern

Analysis. The CTPA captures a single aggregate value between
0% Computational Thinking Pattern coverage, i.e., a student not
having been exposed to any of the patterns in the inventory, and
100% Computational Thinking Pattern coverage, i.e., a student
exposed to all Computational Thinking Patterns, presumably
through building a sequence of projects. The vertical axis
represents the level of the design challenge that would be intrinsic
to a certain game or STEM simulation.

Computational Thinking Patterns begin to make explicit the skills
necessary for students to create STEM simulations. The Scalable
Game Design project starts with simple games students can create
quickly. As students progress they learn the constituent
Computational Thinking Patterns necessary to create associated
simulations. For example, when a student completes the Frogger
game, this student has learned how to make one agent change
another agent; i.e. when the frog agent gets hit by a truck it
changes from a living frog agent into a dead frog agent. At this
point, the student has gained the skill necessary to change a
healthy tree into a tree that is on fire as in the forest fire
simulation depicted in Figure 4; i.e. when a healthy tree agent is
adjacent to a tree agent that is on fire, the healthy tree agent
changes into a tree agent that is on fire with a given percent
chance associated with susceptibility of the healthy tree agent to
the fire.

For our pedagogical approach purposes in the Scalable Game
Design project, detecting the presence of these patterns in student-
created games and simulations can enable us to integrate the
principles of Csikszentmihalyi’s Flow and Vygotsky’s Zone of
Proximal Development to keep students engaged in the act of
creating games and science simulations. We employ a
professional development program based on about 35 contact
hours in which we train teachers to have students build their first
playable game from scratch in about a week (e.g., 5 lessons x 45
minutes). The ability to create a playable game is essential if
students are to reach a profound, personally changing, “wow, I
can do this” realization. In general, the Scalable Game Design
project takes a project-first approach with just in time skill
acquisition to motivate students to garner the skills necessary to
create games simulations.

The fundamental idea of the project-first, just-in-time principles
approach can be illustrated through what we call the Zones of
Proximal Flow (Figure 4), which combines Csikszentmihalyi’s
notion of Flow [18] with Vygotsky’s notion of the Zone of
Proximal Development (ZPD) [16. Flow is an ideal condition for
learning, and illustrates the importance of attending to the
affordances and limitations of particular forms of mediation, as
well as the need for social and technical scaffolding to advance
learning. Mindful of Chaiklin’s [22] instructive discussion of the
misunderstandings of the ZPD, and Griffin and Cole’s observation
about the limitations of a narrow view of the ZPD as a space of
productive adult-centered scaffolding [23], the ZPD can be
understood as a socially-mediated accomplishment, involving the
orchestration of participation in a rich set of carefully designed
practices where forms of assistance and tool use are strategically
employed.

In middle schools we have found that the project-first path is
significantly more effective than paths that rely on learning many
principles first [21] without the presence of a concrete and
interesting challenge. The Project-First path helps to engender
Zones of Proximal Development where, with proper support, they
quickly learn relevant CT concepts.

70

Looking at Csikszentmihalyi’s flow diagram, we see that this
skills first approach risks putting students into a state of boredom.
The project-first approach, on the other hand, risks students
falling into a state of “anxiety” if the project is outside their given
skill level. Our approach combines a gentle-slope of increasingly
complex projects with added scaffolding to guide anxious students
back into the flow.

The project-first versus the principles-first approaches can now be
described as instructional trajectories connecting a skill/challenge
starting point (A) with destination point (B) in Figure 4. In many
traditional CS education models, a principles-first approach would
expose Jasmine (a hypothetical student) to a number of concepts
such as AI search algorithms (A*, LPA*) that may or may not be
relevant for future projects. At some later stage, Jasmine receives
the challenge of making a related project such as a Pacman-like
game. The acquisition of skills without the context of concrete
challenges is not a bad pedagogical model, especially at the
undergraduate CS level, but it runs the risk of seeming irrelevant,
hence boring, for a broader audience of younger students if it does
not go hand-in-hand with project-based approaches [21]. This
assertion is consistent with the Flow model and with our own
observations in classrooms. Instead of decoupling the acquisition
of principles and the application of these principles to a project,
the project-first approach combines just-in-time CT skill
acquisition with application in the production of a tangible
artifact. Employing this approach, we are witnessing truly inspired
math performance of students implementing sophisticated
artificial intelligence [6].

As mentioned above, Flow focuses on the ability of a person to
accomplish a task in a discrete moment of time. In the Scalable
Game Design Project, we equip students with the necessary skills,
such as the mastery of various Computational Thinking Patterns,
such that when presented with a new task such as the creation of a
related simulation, the student can complete the task keeping that
student in flow. However, there are many situations where the
student might not be in Flow, for example, when a student
initially is tasked with their first game. When students create
Frogger for example, some students might have enough know-
how to create the agent interactions necessary to complete the
game, but some students might not. These students are no longer
in Flow, but rather, going towards a state of anxiety wherein the
challenges do not necessarily match up with the skills they have
garnered.

The Scalable Game Design project approach deals with this by
providing external scaffolding instruction constructs present in
Vygotsky’s Zone of Proximal Development. The Zone of
Proximal Development focuses on how students have the means
and motivation increase their individual acuity gaining the know-
how necessary to complete a given task over time. Unlike Flow,
which focuses on the skills an individual student has in a given
moment, the Zone Of Proximal Development is a region where
students can learn from external sources over time. From this we
can outline the general strategy of the Scalable Game Design
Project, namely, using this gentle-slope project-first trajectory
providing students with the skills necessary to be in Flow, and, if
a given student is not in flow, providing the scaffolding necessary
to create a region akin to the Zone of Proximal Development, to

Figure 4: Zones of Proximal Flow relating to the Scalable Game Design Project. Project-First approach motivates students to
gain skills in the form of Computational Thinking Patterns allowing them to meet game and simulation design challenges

71

guide the student back into Flow avoiding student-anxiety
altogether. This is the essence of the Zones of Proximal Flow
diagram depicted in Figure 4.

The Scalable Game Design project supports class instruction
through summer teacher training at the Scalable Game Design
Summer Institute. Our project has taught this Institute over the
last 4 years at the University of Colorado Boulder. The institute
consists of 5-7 days wherein middle and high school teachers
from across Colorado and the United States learn how to create
games and simulations using AgentSheets/AgentCubes as well as
teaching strategies that better equip teachers with effective
methods of integrating computational thinking into their
classroom environments. In addition to this, teachers create and
share classroom materials using the Scalable Game Design Wiki.
This openly accessible information makes tutorials and lesson
plans readily available. Finally the Scalable Game Design Arcade
allows students to download over 10,000 games that other
students have created. The Scalable Game Design Arcade is a
vibrant social community that enables student comments on
games and game ratings. In downloading other students games
one can look at how other students may have implemented
different patterns and also give peer feedback on aspects of the
game itself. Previous research has shown the effectiveness of
these peer-learning mechanisms [7]. All of these resources enable
students, who might be having difficulty with a particular project,
to garner the skills necessary to arrive back in Flow wherein their
skills are well suited for the project based challenge presented.

4. FINDINGS
Through informal observation of thousands of students in the
Scalable Game Design Project, we started to develop the notion of
the Zones of Proximal Flow. Furthermore, scaffolding
computational thinking through a project-first approach with
student summer camp, computer workshops, and after-school
programs has been successful [7]. Through our experiences, we
wondered if there was any possible quantitative evidence
indicating this Zones of Proximal Flow existence in computational
thinking education, and if this evidence exists, what might it look
like?

One piece of evidence that might indicate the existence of the
Zones of Proximal Flow in the Scalable Game Design project is if,
given the scaffolding provided by the project game design
tutorials, students are able to advance to more sophisticated game
and simulation challenges. To validate a student’s intrinsic
motivation in CT education, the program should show a
sustainability of learning over a period of time; otherwise the
student’s educational intrinsic motivation would end after one
experience with the program. Through our project, we have
witnessed many project schools that were able to extend and
transfer their students’ learning abilities and problem solving
skills to the next level of problem domains. In other words,
through our project, students’ learning abilities were increased to
meet higher level of challenges incrementally.

Another piece of evidence that could show the existence of the
Zones of Proximal Flow more directly would be to actually
calculate the Computational Thinking Pattern present in student
game or simulation artifacts. By employing the aforementioned
Computational Thinking Pattern Analysis, we can actually see
which skills students had previously gained to meet a given
project challenge. From this, we can begin to see if our project
challenges vs. skills graph resembles something akin to the Zones
of Proximal Flow.

In the following section, we illustrate two kinds of evidence of the
Zones of Proximal Flow: project sustainability and student
programming abilities matched to the Zones of Proximal Flow
graph.

4.1 Sustainability: Probability to Advance
One way to verify the Zones of Proximal Flow framework is to
explore its sustainability. If indeed there is a notion of a gentle
slope of game design and simulation authoring projects presenting
gradually increasing challenges one would expect to see a high
percentage of teachers and students advancing from one kind of
project to a more sophisticated one.

Over the last 3 years, 72 different types of games and simulations
have been collected from 46 participating schools. As part of the
project, teachers were required to do at least one in-class game or
simulation unit and were given compensation when they
completed this unit; teachers were encouraged to do more than
one unit but no compensation was given for additional units and
additional in-class game or simulation design units were not
required in any way. All 46 schools submitted at least one project
(game or simulation) to the Scalable Game Design Arcade; of
those 46 schools, 37 schools submitted two projects or more.
Also, 30 schools and 23 schools submitted 3 and 4 projects or
more, respectively (Figure 5). Interestingly, these numbers show
that approximately 80% of classrooms moved forward from the
previous project (or an attrition rate of 20% for each project): 81%
of the schools that submitted at least one project, submitted two
projects or more, and 80% of this second group submitted three
projects or more.

Figure 5. Probability to Advance:

A high degree of sustainability is suggested by a large
 rate of advancement. Over 80% of schools advance to create

a second project, of these 80% advance to a third project,
of these 80% advance to a fourth project.

Considering teachers’ short training timeframe and the lack of
financial support after the first module implementation, the 80%
success rate can be considered quite high, implying the existence
of sustainability. Also, this result possibly indicates that many
project schools have successfully helped students follow the
Zones of Proximal Flow, spanning students’ problem solving
skills over multiple problem domains. Coupled with previous
research that shows that teachers and students actively use the
scaffolding provided by the project, this data indicates that the
scaffolding is effective in overcoming mismatched challenges and

72

skills allowing students to move onto subsequent projects. It
should be noted that this in no way proves the existence of the
Zones of Proximal Flow, however, it does indicate that students,
for the most part, had adequate skills to meet their programming
challenges.

4.2 Zones of Proximal Flow in a Classroom
One might wonder if there was a more direct method to indicate
the existence of the Zones of Proximal Flow. An initial attempt at
this might involve finding a way to graph student challenges vs.
student skills. Then, we could compare the student trajectories
over time, in this challenge vs. skills space, to see if there is any
resemblance to the Zones of Proximal Flow graph depicted in
Figure 4. In other words, can we illustrate student skills and
challenges that progress overtime through Scalable Game Design
curriculum on the graph of Zones of Proximal Flow?

We have a method, developed by Koh et al [13], that allows us to
calculate the “skills” a user shows in a given game creation task
by looking at the existence and amount of individual
Computational Thinking Patterns present in that game. This
method is called Computational Thinking Pattern Analysis
(CTPA). Computational Thinking Pattern Analysis measures the
semantic meaning of the games/simulations programmed with
AgentSheets or AgentCubes [13]. Through CTPA process, a
student-programmed project can be converted into a holistic
number per computational thinking pattern to assess student-
learning abilities.

The Latent Semantic Analysis technique, as applied to CTPA,
analyzes the implemented computational thinking patterns (CTP)
in a given AgentSheets/AgentCubes project. CTPA compares a
specific game/simulation with pre-defined canonical
Computational Thinking Patterns using an LSA inspired
technique. To perform CTPA, a given AgentSheets/AgentCubes
project should be converted and expressed as a vector. The
interpreted AgentSheets/AgentCubes project vectors are
calculated with the Equation 1 to show its semantic meaning [13].

Equation 1. Computational Thinking Pattern Analysis

In this equation, u and v refer to a given project and one canonical
computational thinking pattern respectively. N corresponds to the
vector size of a project or Computational Thinking Pattern, and m
refers to the number of Computational Thinking Patterns that are
applied to CTPA. The calculated result of CTPA through CTPA
(1) to CTPA (m) could be represented as an m length vector [13].

The CTPA calculated values, each element in m length vector,
indicate student-learning abilities in each computational thinking
pattern programming level. The length (norm) of this m length
vector, a numerical value, is interpreted as the student’s skill to
design/implement a game/simulation. Also, this Skill Score
equation is used to measure the challenges that students face
(programming complexity) to program a game/simulation in the
same manner to assess student-programming abilities.

Skill Score =

Equation 2. Skill Score

In the Scalable Game Design project-first approach, students are
given a challenge, such as a simulation or game, which motivates
them to gain the skills necessary to accomplish that challenge.
Given that we can calculate student skills, by looking for the
presence of Computational Thinking Patterns, we can begin to
fashion what this challenges vs. skills graph might look like in a
classroom context. Figure 6 depicts this initial attempt at this
challenges vs. skills graph.

Figure 6: Student trajectory data resembling the Zones of
Proximal Flow

The colored lines in Figure 6 represent five individual student
trajectories over the course of four games. These five trajectories
were chosen not because they are indicative of this particular
class, but rather, they give an initial picture as to how different
students advanced through the class. The black line in Figure 6
represents the game students would create if they followed the
tutorial perfectly. The overlaid colored regions are meant to be a
very informal representation of Flow, ZPD, and anxiety, and by
no means imply that we know where the thresholds to these zones
might exist.

To the right of the black line, we see a zone wherein students have
additional Computational Thinking Patterns included in their
project indicating a possibly more sophisticated game or
simulation. To the left of the black line we see a zone wherein
student project do not have all the Computational Thinking
Patterns necessary to create that particular game or simulation
present. This area indicates that student did not display all the
skills necessary to meet the game or simulation authoring
challenge. The black line, in essence, can be thought of as ‘Flow’
where the challenges and the student abilities are exactly matched.

We currently have no way yet of knowing how wide or narrow the
Flow zone or the Zone of Proximal Development is in Figure 6.
We currently speculate that if a graph of a student goes to the left
side of the Flow line, then the student goes into the Zone of
Proximal Development or Anxiety zone wherein the student might

73

need outside instruction to complete the challenge. Conversely, if
a graph of a student goes to the right side of the Flow line, then
the students has more expertise as compared to the challenge.
Finally, if a given students progression line is too far to the left of
the Flow line, we surmise that this might indicate student anxiety.
If a given student’s line is too far to the right of the Flow line, it
may indicate student boredom.

5. DISCUSSION AND CONCLUSION
The Zones of Proximal Flow graph depicted in Figure 3 combines
two pedagogical concepts to arrive at a strategy for keeping
students engaged in classroom activities. This paper is an initial
attempt to explain a strategy that applies the Zones of Proximal
Flow theory and begins to present data possibly showing its
existence. To that end, Figure 5 shows that classes readily tried
more sophisticated projects indicating classroom engagement.

Figure 6 is an initial attempt at displaying student trajectories on a
challenges vs. skills graph. In Figure 6 we see student
progressions that begin to resemble the graph shown in Figure 3.
This initial data is relevant to the Zones of Proximal Flow
existence, however much more research must be done to support
this theory. Further research needs to investigate where the
thresholds for Flow, the Zone of Proximal Development, anxiety,
and boredom lie in this space. Furthermore, this theory should be
applied to other areas of classroom instruction, possibly providing
teachers with a means of evaluating themselves or their classes
giving them cues as to when outside instruction and scaffolding
are effective and better

The Zones of Proximal Flow, a combined concept of Flow and the
Zone of Proximal Development, is designed to promote student
intrinsic motivation and leverage student learning experience. In
our previous research, we have described the Zones of Proximal
Flow as our project approach to broaden participation of minority
and female students [ref], but it was just a theory. In this paper,
we have shown early stage empirical data that begins to indicate
its existence and possible effectiveness. It is our hope that future
research into the Zones of Proximal Flow will paint clearer picture
of this space, and be useful not only in the context of end-user
programming, but have applications and facilitate engaging
student curricula in a variety of different educational domains.

6. REFERENCES
[1] Squire, K. D. (2003). Video games in education. Int. J. Intell.

Games & Simulation, 2(1), 49-62.

[2] Repenning, A., & Ambach, J. (1996, September). Tactile
programming: A unified manipulation paradigm supporting
program comprehension, composition and sharing. In Proc.
Visual Languages, 1996. (pp. 102-109). IEEE.

[3] Kelleher, C., & Pausch, R. (2005). Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers. ACM Computing
Surveys (CSUR), 37(2), 83-137.

[4] Repenning, A. (2000). AgentSheets®: An interactive
simulation environment with end-user programmable
agents. Interaction.

[5] Ioannidou, A., Repenning, A., & Webb, D. C. (2009).
AgentCubes: Incremental 3D end-user development. Journal
of Visual Languages & Computing, 20(4), 236-251.

[6] Repenning, A. (2006, July). Excuse me, I need better AI!:
employing collaborative diffusion to make game AI child's

play. In Proceedings of the 2006 ACM SIGGRAPH
symposium on Videogames (pp. 169-178). ACM.

[7] Basawapatna, A. R., Koh, K. H., & Repenning, A. (2010,
June). Using scalable game design to teach computer science
from middle school to graduate school. In Proc. of ITICSE
‘10 (pp. 224-228). ACM.

[8] Koh, K.H., Repenning, A, Nickerson, H., Endo, Y., &
Motter, P., 2013. Will it stick?: exploring the sustainability
of computational thinking education through game design. In
Proc. of SIGCSE '13 (pp. 597-602) ACM.

[9] Repenning, A., Webb, D., & Ioannidou, A. (2010, March).
Scalable game design and the development of a checklist for
getting computational thinking into public schools. In Proc.
Of SIGCSE ‘10 (pp. 265-269). ACM.

[10] Barr, D., Harrison, J., & Conery, L. (2011). Computational
thinking: A digital age skill for everyone. Learning &
Leading with Technology, 38(6), 20-23.

[11] Wing, J. M. (2008). Computational thinking and thinking
about computing.Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering
Sciences, 366(1881), 3717-3725.

[12] "Front Matter." Learning Science Through Computer Games
and Simulations. Washington, DC: The National Academies
Press, 2011.

[13] Koh, K. H., Basawapatna, A., Bennett, V., & Repenning, A.
(2010, September). Towards the automatic recognition of
computational thinking for adaptive visual language learning.
(VL/HCC), 2010 IEEE Symposium on (pp. 59-66). IEEE.

[14] Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C.,
& Marshall, K. S. (2011, March). Recognizing computational
thinking patterns. In Proc. Of SIGCSE ’11 (pp. 245-250).
ACM.

[15] Basawapatna, A., Repenning, A., & Lewis. C., 2013. The
simulation creation toolkit: an initial exploration into making
programming accessible while preserving computational
thinking. In Proc. Of SIGCSE '13 (pp. 501-506). ACM.

[16] Vygotsky, L. (1987). Zone of proximal development. Mind
in society: The development of higher psychological
processes, 52-91, Cambridge, MA, Harvard University Press

[17] Csikszentmihalyi, M., & Csikszentmihalyi, I. (1975). Beyond
boredom and anxiety: The experience of play in work and
games. San Francisco: Jossey-Bass.

[18] Csikszentmihalyi, M. (1997). Finding flow: The psychology
of engagement with everyday life. Basic Books.

[19] Nakamura, J., & Csikszentmihalyi, M. (2009). Flow theory
and research.Handbook of positive psychology, 195-206.

[20] Nakamura, J., & Csikszentmihalyi, M. (2002). The concept
of flow. Handbook of positive psychology, 89-105.

[21] Webb, D., Repenning, A. and Koh, K. Toward an Emergent
Theory of Broadening Participation in Computer Science
Education. In Proc. Of SIGCSE ’12 (pp. 173-178). ACM.

[22] Chaiklin, S. The zone of proximal development in
Vygotsky’s analysis of learning and instruction. Cambridge
University Press, Cambridge, England, 2003.

[23] Griffin, P. and Cole, M. Current Activity for the Future: The
Zo-ped. Jossey-Bass, San Francisco, 1984

74

