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ABSTRACT 
This paper presents a novel pedagogical framework, entitled the 
Zones of Proximal Flow, which integrates Vygotsky’s Zone of 
Proximal Development theory with Csikszentmihalyi’s ideas 
about Flow. Flow focuses on the individual– an individual is in 
Flow when challenges are balanced with skills. The Zone of 
Proximal Development, on the other hand, brings in a social 
learning aspect focusing on a student’s ability to learn concepts 
with external support. From our research experiences bringing 
game and simulation design into middle school classrooms, we 
attempt to provide students with appropriate challenges using a 
project-first based approach that aims to keep students in Flow. 
The project-first approach employs inquiry based scaffolding to 
guide students, with appropriate support by their teachers, through 
Vygotsky’s Zone of Proximal Development, back in to 
Csikszentmihalyi’s state of Flow for an ideal learning experience. 
We call this space the Zones of Proximal Flow. Data indicate that 
the Zones of Proximal Flow approach works, keeping classrooms 
engaged in the act of game design and enabling students to 
advance to more complex program creations. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computers and Information 
Science Education 

General Terms 
Management, Measurement, Performance, Human Factors 

Keywords 
Zone of Proximal Development, Flow, Zones of Proximal Flow, 
Computational Thinking, Computational Thinking Patterns, 
Simulations, Scalable Game Design, Computer Science Education 

1. INTRODUCTION 
At present time, much research into educational end-user 
programming tools focus on giving students, with little to no prior 
programming experience, the skills necessary to rapidly create 
games [1]. When compared to traditional programming languages, 
such as C++ or Java, these tools provide students with a means to 
make sophisticated graphical games immediately by employing 
drag and drop elements, in place of often tedious syntax that 
accompany traditional programming mechanics [2]. Employing 
graphical elements, students are quickly introduced to the logic of 
programming; additionally, game programming has the power to 
motivate students in the domain of computer science [3].  

Traditional instruction, based on introducing principles-first, 
where students engage in multiple semesters of theory before 
undertaking interesting projects, is not compelling to students 
[21]. Just as important as end-user programming tools, is the 
pedagogical approach to applying these tools into the classroom 
curriculum. For our purposes we have found that a project-first 
approach, wherein students are motivated to gain the skills 
necessary to complete the problem, facilitates student learning of 
skills and the ability of classes to attempt more sophisticated 
projects [21]. Furthermore, scaffolding and resources provided to 
teachers and students allows for this project-first approach by 
enabling students and teachers to gain additional skills, if 
necessary, to face these increasingly challenging projects. While 
syntactic programming is necessary to overcome frustration in 
novice programmers, perhaps a much more important aspect of 
computer science education is the pedagogical approach which 
even has important implications for broadening participation [21]. 

As part of the National Science Foundation funded Scalable Game 
Design Project, at the University of Colorado Boulder, we employ 
two such end-user programming tools that enable rapid game and 
simulation prototyping by end-users: AgentSheets [4] and its 
subsequent 3D version AgentCubes [5]. One aim of these tools is 
to enable the concept of low-threshold high ceiling, meaning that 
students can quickly create games overcoming the barrier of entry 
into programming, but also, can make increasingly sophisticated 
games and simulations as they gain more programming skills. In 
AgentSheets, for example, students can go from no programming 
experience to creating their first game in around five hours; 
subsequently, as students gain expertise, they can create complex 
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high-level interactions relating to math, science, and artificial 
intelligence for example [6,7]. As part of this project, over 10,000 
student games and simulations have been created across the 
United States [8]. 

The Scalable Game Design Project aims to broaden participation 
among diverse sets of students from elementary school to 
graduate school education. However, in addition to motivating 
students through games, the Scalable Game Design approach 
emphasizes giving students the necessary skills to investigate 
science [9]. Empowering students with the ability to create 
simulations links the Scalable Game Design process to 
computational thinking learning. A quote from Len Scrogan, the 
former director of Technology for the Boulder Valley School 
District, makes explicit the link between game and simulation 
design in terms of computational thinking. Len walked up to a 
student creating space invaders through the Scalable Game Design 
project and asked: 

“Now that you’ve made ‘Space Invaders’, can you create a 
science simulation [9].” 

Unwrapping this statement begins to reveal important educational 
concepts actually learned through game creation. Specifically, Mr. 
Scrogan is asking how students can leverage the skills they have 
acquired from game design and apply these skills to simulation 
authoring. As students learn how to create games, they are 
motivated to learn the programming constructs necessary to 
complete the agent-interactions present in these games. 
Furthermore, many of these interactions present in games, are also 
present in science simulations. Through game creation, students 
are actually gaining the skills necessary to create representative 
systems. 

Creating simulations relates closely to computational thinking. 
Currently, computational thinking is defined to include the 
following: problem formulation, logically organizing and 
analyzing data, representing data through abstractions such as 
models, automating solutions through algorithmic thinking, 
implementing effective solutions optimally, and transferring the 
solution to solve a wide variety of problems [10]. Furthermore, 
Jeanette Wing, a major proponent of computational thinking states 
that finding the right abstraction, ignoring and emphasizing 
certain aspects of the real world underlies computational thinking 
[11]. When creating a simulation, students must define a problem 
in the real world domain. The students must abstract this problem 
into the representational domain creating a model that includes the 
aspects of the real world problem necessary to gain insight into a 
particular problem. Finally, students experiment on the simulation 
to find out information in the representational domain that can be 
applied to the real world domain. The concrete link between game 
programming and simulations is currently being established, for 
example, in the recent National Research Council report entitled 
“Learning Science Through Games and Simulations” [12].    

We have done much research into the relationship between game 
design and simulation creation in educational contexts. This 
research has led to the development of a construct entitled 
Computational Thinking Patterns [13]. Computational Thinking 
Patterns are agent interactions students initially learn in game 
design, but then, transfer to the creation of science simulations. 
Examples of Computational Thinking Patterns include 
programming one agent to collide with another agent, one agent 
creating another agent, one agent tracking another agent, and one 
agent transporting another agent among many others. For 
example, in the game Pacman a student might program ghost 

agents tracking a pacman agent; similarly in a predator/prey 
simulation, a student might implement the predator agent tracking 
a prey agent. A more exhaustive list and description of 
Computational Thinking Patterns can be found in [7]. 

Previous research has shown that users can identify the necessary 
Computational Thinking Patterns necessary to implement an 
interaction outside of the game context and use the Computational 
Thinking Patterns construct to directly create simulations [14,15]. 
By combining Computational Thinking Patterns, users can begin 
to piece together and experiment on simulations, such as 
epidemiology simulations and predator/prey simulations that 
relate to their classroom curriculum. 

In addition as acting as the units of transfer between games and 
simulations, we have also started analyzing games and 
simulations by their constituent Computational Thinking Patterns. 
This method is called Computational Thinking Pattern Analysis 
(CTPA) and currently, we have the ability to view the constituent 
patterns students have programmed when creating a given game 
or simulation [13]. Computational Thinking Pattern Analysis 
allows us to compare what skills students have acquired through 
game programming and identify corresponding simulations that 
students can create given the mastery of these pattern 
combinations [8,13]. Furthermore, Computational Thinking 
Pattern Analysis can be used as an assessment tool that enables us 
to match student skill with appropriate challenges within the 
domain of past work. 

The idea of matching skills and challenges has a rich history in 
terms of pedagogy research. For example, Vygotsky’s theory 
regarding the Zone of Proximal Development describes the 
difference between what a learner can do with and without 
external help [16].  Similarly, Csikszentmihalyi’s theory of Flow 
states that people are in a completely motivated and engaged state 
when the skills they have garnered match well with the challenges 
they are currently undertaking [17]. For our research purposes, 
implementing game and simulation projects in school classroom 
curricula, the strategy we employ combines both of these theories 
into an emerging space we call the Zones of Proximal Flow. In 
short, our Zones of Proximal Flow strategy combines a project-
first gentle-slope approach, involving games and simulations of 
increasing complexity, matched with student skill, plus added 
external scaffolding to guide anxious students back into the Flow. 
The remainder of this paper will describe the synthesis of the 
Zones of Proximal Flow, the implementation of this strategy in 
the classroom, and the results of this approach exposing students 
to computational thinking through game and simulation design.  

2. THE ZONES OF PROXIMAL FLOW: 
CSIKSZENTMIHALYI MEETS VYGOTSKY 
Educational theories regarding learning and development are 
often described as if they are independent of other processes. In 
reality, both classrooms and individual learners are complex 
entities in which it is possible to observe evidence that supports 
multiple educational theories simultaneously. During Scalable 
Game Design activities, students can exhibit behaviors that are 
characteristic of both Csikszentmihalyi’s notion of Flow [17], 
which relates primarily to specific moments in time, and 
Vygotsky’s theory of the Zone of Proximal Development [16], 
which describes a student’s ability to move beyond independent 
problem solving through scaffolding over extended periods of 
time. Considering these two ideas led us to develop the Zones of 
Proximal Flow framework to account for what we were observing. 
In this section, we examine both theories in detail, explain their 
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compatibility, and view Scalable Game Design through the lens of 
this combined framework. 

The concept of Flow has its origins in Csikszentmihalyi’s study of 
intrinsically motivated activities [18]. A high degree of immersion 
in such an activity can result in an optimal experience, which 
refers to feelings of firm control and coping ability during goal 
pursuit while performing at the limits of one’s abilities. As an 
example, intense participation in a demanding creative or athletic 
endeavor can generate an optimal experience regardless of 
whether the outcome is aesthetically pleasing or the activity 
results in physical discomfort. Optimal experience is also 
associated with a state of deep concentration; the related distortion 
of the passing of time as the experience unfolds; and a notable 
feeling of enjoyment, altered consciousness, or extraordinary 
experience. Together, these experiential characteristics identify 
the state known as Flow. An important precondition for flow is 
that an individual’s level of skill must correspond well to the level 
of challenge. Overly easy challenges result in relaxation or 
boredom, depending on the degree of mismatch [19,20]. 
Similarly, challenges that are too difficult prompt vigilance or 
anxiety. Figure 1 depicts Csikszentmihalyi’s early flow diagram. 

 

Figure 1. Csikszentmihalyi’s depiction of Flow, the region 
between boredom and anxiety wherein skills align with 

challenges [17] 

While Flow has been examined in the context of both short and 
long timescales, it has most often been used to describe ‘in the 
moment’ states of an individual [17,20]. In the short term, staying 
in a Flow state is contingent on continuing motivation to prolong 
the activity underway, which is determined by assessing the 
individual–environment interaction occurring at a given moment 
rather than by consulting an established structure. Concomitant 
incremental improvements in performance can be observed. 
Because Flow is a pleasurable state, people desire to repeat 
experiences that produce it, leading to growth over the long term 
both in skill and in the level of challenge to be faced. Note that 
either skill or challenge increases can take the lead role at any 
given point in this progression, with the other factor subsequently 
rising to complement it. In formal learning environments, it has 
been found that active learning promotes short-term flow and that 
flow experiences predict greater persistence and achievement in 
the associated activity over the long term [19]. 

Vygotsky’s theory of the Zone of Proximal Development (ZPD) 
arose as a way of explaining how learning and development in 
children are related [16]. Rejecting existing theories that 
development must precede or coincide with learning, Vygotsky 
instead proposed that learning itself was necessary to promote 
development. From this viewpoint, the developmental level of an 
individual can be measured not just in the traditional manner, by 

examining current ability, but also by determining what that 
individual is ready to master given appropriate assistance. The 
ZPD is the area between these two levels, which “defines those 
functions that… are in the process of maturation [16].” Learning 
experiences aimed within the ZPD are the most useful. According 
to Vygotsky, there is no developmental advantage to providing 
instruction in areas of existing mastery, nor is it possible for 
children to learn material that is beyond their ZPD. Figure 2 
depicts the Zone of Proximal Development. 

 

Figure 2. Zone Of Proximal Development which represents 
what the learner can do with guidance, used with permission 
under © CC0 1.0 Universal Public Domain Dedication 

The sociocultural context in which learning occurs is a key part of 
Vygotsky’s theory. Children naturally begin learning from their 
parents at birth, spurring their initial development. School brings 
both a more systematic approach to instruction and more 
opportunities to learn from and with peers—children working 
together in a group may be able to accomplish what an individual 
child could manage only with a teacher’s guidance. In either case, 
what starts out as an interpersonal experience promotes 
development that leads to subsequent independent 
accomplishment, thus shifting the ZPD. The theory’s major 
themes are summed up in this brief passage from Vygotsky’s 
writings: 

“We propose that an essential feature of learning is that it creates 
the zone of proximal development; that is, learning awakens a 
variety of internal developmental processes that are able to 
operate only when the child is interacting with people in his 
environment and in cooperation with his peers. Once these 
processes are internalized, they become part of the child’s 
independent developmental achievement [16].” 

Through our research approaches in the Scalable Game Design 
Project, we have found that the concepts of Flow and the ZPD are 
complimentary. Csikszentmihalyi emphasized the individual’s 
skills establishing a hard boundary between states of Flow and 
non-Flow. Furthermore, the concept of Flow does not have any 
notion of social learning, or learning outside of the individual. 
However, we have found that students can be in Flow, wherein 
the game or simulation authoring challenges match their skill 
level, but also, students might be in a state where they need 
outside help in order to meet the program challenges they face. 
This outside help takes the form of focused in-class instruction, 
online tutorials, and peer learning among classmates. When 
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students make use of this outside help, because of the scaffolding 
that exists, they are not in a state of anxiety necessarily, but rather, 
in a state more akin to the Zone of Proximal Development.  

 

Figure 3. Zones of Proximal Flow wherein ZPD is located in 
between regions of Flow and anxiety 

Combining Flow and ZPD we arrive at space overlaying a social 
learning element to Flow. Figure 3 depicts this combined space 
entitled the Zones of Proximal Flow wherein the Zone of 
Proximal Development is lies between the regions of Flow and 
anxiety. The question still remains how do we apply this construct 
to facilitate engaged student learning trajectories? The following 
section describes how the Scalable Game Design Project 
implementation relates to the Zones of Proximal Flow. 

3. ZONES OF PROXIMAL FLOW AND 
THE SCALABLE GAME DESIGN 
APPROACH 
The Scalable Game Design curriculum attempts to bring computer 
science education into public schools through game and 
simulation design. The notion of the Zones of Proximal flow is a 
framework that guides students through the challenge skills space 
in a low threshold high ceiling path of increasingly sophisticated 
projects. This gentle slope trajectory starts with a simple game, 
such as Frogger, wherein students learn beginning Computational 
Thinking Patterns like one agent colliding another agent, one 
agent creating another agent, and one agent changing another 
agent, and one agent tracking another agent. After students master 
these patterns, students move onto more sophisticated games like 
Sokoban, where they learn how to make one agent push another 
agent; Centipede, where they learn how to make a group of agents 
move in concert with one another; and the Sims, wherein they 
learn how to make one agent track other agents in the world [6]. 
At any point, if game challenges do not match the student’s skills, 
scaffolding is provided to support student development. These 
include class instruction, tutorials that are readily available on the 
Scalable Game Design wiki, in-class peer student learning, 
assessment instruments that make explicit student skills obtained 
through programming, and the ability to download fellow 
classmates’ projects. This scaffolding is an attempt to take 
students who are in the Zone of Proximal Development and bring 
them back into Flow. Figure 4 depicts how the Zones of Proximal 
Flow relates to the Scalable Game Design Project. 

In Figure 4, the horizontal axis represents students’ computational 
thinking skills, as measured by Computational Thinking Pattern 

Analysis. The CTPA captures a single aggregate value between 
0% Computational Thinking Pattern coverage, i.e., a student not 
having been exposed to any of the patterns in the inventory, and 
100% Computational Thinking Pattern coverage, i.e., a student 
exposed to all Computational Thinking Patterns, presumably 
through building a sequence of projects. The vertical axis 
represents the level of the design challenge that would be intrinsic 
to a certain game or STEM simulation. 

Computational Thinking Patterns begin to make explicit the skills 
necessary for students to create STEM simulations. The Scalable 
Game Design project starts with simple games students can create 
quickly. As students progress they learn the constituent 
Computational Thinking Patterns necessary to create associated 
simulations. For example, when a student completes the Frogger 
game, this student has learned how to make one agent change 
another agent; i.e. when the frog agent gets hit by a truck it 
changes from a living frog agent into a dead frog agent. At this 
point, the student has gained the skill necessary to change a 
healthy tree into a tree that is on fire as in the forest fire 
simulation depicted in Figure 4; i.e. when a healthy tree agent is 
adjacent to a tree agent that is on fire, the healthy tree agent 
changes into a tree agent that is on fire with a given percent 
chance associated with susceptibility of the healthy tree agent to 
the fire. 

For our pedagogical approach purposes in the Scalable Game 
Design project, detecting the presence of these patterns in student-
created games and simulations can enable us to integrate the 
principles of Csikszentmihalyi’s Flow and Vygotsky’s Zone of 
Proximal Development to keep students engaged in the act of 
creating games and science simulations. We employ a 
professional development program based on about 35 contact 
hours in which we train teachers to have students build their first 
playable game from scratch in about a week (e.g., 5 lessons x 45 
minutes). The ability to create a playable game is essential if 
students are to reach a profound, personally changing, “wow, I 
can do this” realization. In general, the Scalable Game Design 
project takes a project-first approach with just in time skill 
acquisition to motivate students to garner the skills necessary to 
create games simulations.  

The fundamental idea of the project-first, just-in-time principles 
approach can be illustrated through what we call the Zones of 
Proximal Flow (Figure 4), which combines Csikszentmihalyi’s 
notion of Flow [18] with Vygotsky’s notion of the Zone of 
Proximal Development (ZPD) [16. Flow is an ideal condition for 
learning, and illustrates the importance of attending to the 
affordances and limitations of particular forms of mediation, as 
well as the need for social and technical scaffolding to advance 
learning. Mindful of Chaiklin’s [22] instructive discussion of the 
misunderstandings of the ZPD, and Griffin and Cole’s observation 
about the limitations of a narrow view of the ZPD as a space of 
productive adult-centered scaffolding [23], the ZPD can be 
understood as a socially-mediated accomplishment, involving the 
orchestration of participation in a rich set of carefully designed 
practices where forms of assistance and tool use are strategically 
employed.  

In middle schools we have found that the project-first path is 
significantly more effective than paths that rely on learning many 
principles first [21] without the presence of a concrete and 
interesting challenge. The Project-First path helps to engender 
Zones of Proximal Development where, with proper support, they 
quickly learn relevant CT concepts.  
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Looking at Csikszentmihalyi’s flow diagram, we see that this 
skills first approach risks putting students into a state of boredom. 
The project-first approach, on the other hand, risks students 
falling into a state of “anxiety” if the project is outside their given 
skill level. Our approach combines a gentle-slope of increasingly 
complex projects with added scaffolding to guide anxious students 
back into the flow. 

The project-first versus the principles-first approaches can now be 
described as instructional trajectories connecting a skill/challenge 
starting point (A) with destination point (B) in Figure 4. In many 
traditional CS education models, a principles-first approach would 
expose Jasmine (a hypothetical student) to a number of concepts 
such as AI search algorithms (A*, LPA*) that may or may not be 
relevant for future projects. At some later stage, Jasmine  receives 
the challenge of making a related project such as a Pacman-like 
game. The acquisition of skills without the context of concrete 
challenges is not a bad pedagogical model, especially at the 
undergraduate CS level, but it runs the risk of seeming irrelevant, 
hence boring, for a broader audience of younger students if it does 
not go hand-in-hand with project-based approaches [21]. This 
assertion is consistent with the Flow model and with our own 
observations in classrooms. Instead of decoupling the acquisition 
of principles and the application of these principles to a project, 
the project-first approach combines just-in-time CT skill 
acquisition with application in the production of a tangible 
artifact. Employing this approach, we are witnessing truly inspired 
math performance of students implementing sophisticated 
artificial intelligence [6]. 

As mentioned above, Flow focuses on the ability of a person to 
accomplish a task in a discrete moment of time. In the Scalable 
Game Design Project, we equip students with the necessary skills, 
such as the mastery of various Computational Thinking Patterns, 
such that when presented with a new task such as the creation of a 
related simulation, the student can complete the task keeping that 
student in flow. However, there are many situations where the 
student might not be in Flow, for example, when a student 
initially is tasked with their first game. When students create 
Frogger for example, some students might have enough know-
how to create the agent interactions necessary to complete the 
game, but some students might not. These students are no longer 
in Flow, but rather, going towards a state of anxiety wherein the 
challenges do not necessarily match up with the skills they have 
garnered. 

The Scalable Game Design project approach deals with this by 
providing external scaffolding instruction constructs present in 
Vygotsky’s Zone of Proximal Development. The Zone of 
Proximal Development focuses on how students have the means 
and motivation increase their individual acuity gaining the know-
how necessary to complete a given task over time. Unlike Flow, 
which focuses on the skills an individual student has in a given 
moment, the Zone Of Proximal Development is a region where 
students can learn from external sources over time. From this we 
can outline the general strategy of the Scalable Game Design 
Project, namely, using this gentle-slope project-first trajectory 
providing students with the skills necessary to be in Flow, and, if 
a given student is not in flow, providing the scaffolding necessary 
to create a region akin to the Zone of Proximal Development, to 

Figure 4: Zones of Proximal Flow relating to the Scalable Game Design Project. Project-First approach motivates students to 
gain skills in the form of Computational Thinking Patterns allowing them to meet game and simulation design challenges 
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guide the student back into Flow avoiding student-anxiety 
altogether. This is the essence of the Zones of Proximal Flow 
diagram depicted in Figure 4. 

The Scalable Game Design project supports class instruction 
through summer teacher training at the Scalable Game Design 
Summer Institute. Our project has taught this Institute over the 
last 4 years at the University of Colorado Boulder. The institute 
consists of 5-7 days wherein middle and high school teachers 
from across Colorado and the United States learn how to create 
games and simulations using AgentSheets/AgentCubes as well as 
teaching strategies that better equip teachers with effective 
methods of integrating computational thinking into their 
classroom environments. In addition to this, teachers create and 
share classroom materials using the Scalable Game Design Wiki. 
This openly accessible information makes tutorials and lesson 
plans readily available. Finally the Scalable Game Design Arcade 
allows students to download over 10,000 games that other 
students have created. The Scalable Game Design Arcade is a 
vibrant social community that enables student comments on 
games and game ratings. In downloading other students games 
one can look at how other students may have implemented 
different patterns and also give peer feedback on aspects of the 
game itself. Previous research has shown the effectiveness of 
these peer-learning mechanisms [7]. All of these resources enable 
students, who might be having difficulty with a particular project, 
to garner the skills necessary to arrive back in Flow wherein their 
skills are well suited for the project based challenge presented. 

4. FINDINGS 
Through informal observation of thousands of students in the 
Scalable Game Design Project, we started to develop the notion of 
the Zones of Proximal Flow. Furthermore, scaffolding 
computational thinking through a project-first approach with 
student summer camp, computer workshops, and after-school 
programs has been successful [7]. Through our experiences, we 
wondered if there was any possible quantitative evidence 
indicating this Zones of Proximal Flow existence in computational 
thinking education, and if this evidence exists, what might it look 
like?  

One piece of evidence that might indicate the existence of the 
Zones of Proximal Flow in the Scalable Game Design project is if, 
given the scaffolding provided by the project game design 
tutorials, students are able to advance to more sophisticated game 
and simulation challenges. To validate a student’s intrinsic 
motivation in CT education, the program should show a 
sustainability of learning over a period of time; otherwise the 
student’s educational intrinsic motivation would end after one 
experience with the program. Through our project, we have 
witnessed many project schools that were able to extend and 
transfer their students’ learning abilities and problem solving 
skills to the next level of problem domains.  In other words, 
through our project, students’ learning abilities were increased to 
meet higher level of challenges incrementally.  

Another piece of evidence that could show the existence of the 
Zones of Proximal Flow more directly would be to actually 
calculate the Computational Thinking Pattern present in student 
game or simulation artifacts. By employing the aforementioned 
Computational Thinking Pattern Analysis, we can actually see 
which skills students had previously gained to meet a given 
project challenge. From this, we can begin to see if our project 
challenges vs. skills graph resembles something akin to the Zones 
of Proximal Flow. 

In the following section, we illustrate two kinds of evidence of the 
Zones of Proximal Flow: project sustainability and student 
programming abilities matched to the Zones of Proximal Flow 
graph.  

4.1 Sustainability: Probability to Advance 
One way to verify the Zones of Proximal Flow framework is to 
explore its sustainability. If indeed there is a notion of a gentle 
slope of game design and simulation authoring projects presenting 
gradually increasing challenges one would expect to see a high 
percentage of teachers and students advancing from one kind of 
project to a more sophisticated one.  

Over the last 3 years, 72 different types of games and simulations 
have been collected from 46 participating schools. As part of the 
project, teachers were required to do at least one in-class game or 
simulation unit and were given compensation when they 
completed this unit; teachers were encouraged to do more than 
one unit but no compensation was given for additional units and 
additional in-class game or simulation design units were not 
required in any way. All 46 schools submitted at least one project 
(game or simulation) to the Scalable Game Design Arcade; of 
those 46 schools, 37 schools submitted two projects or more. 
Also, 30 schools and 23 schools submitted 3 and 4 projects or 
more, respectively (Figure 5). Interestingly, these numbers show 
that approximately 80% of classrooms moved forward from the 
previous project (or an attrition rate of 20% for each project): 81% 
of the schools that submitted at least one project, submitted two 
projects or more, and 80% of this second group submitted three 
projects or more.  

 
Figure 5. Probability to Advance:  

A high degree of sustainability is suggested by a large 
 rate of advancement. Over 80% of schools advance to create 

a second project, of these 80% advance to a third project,  
of these 80% advance to a fourth project. 

Considering teachers’ short training timeframe and the lack of 
financial support after the first module implementation, the 80% 
success rate can be considered quite high, implying the existence 
of sustainability. Also, this result possibly indicates that many 
project schools have successfully helped students follow the 
Zones of Proximal Flow, spanning students’ problem solving 
skills over multiple problem domains. Coupled with previous 
research that shows that teachers and students actively use the 
scaffolding provided by the project, this data indicates that the 
scaffolding is effective in overcoming mismatched challenges and 
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skills allowing students to move onto subsequent projects. It 
should be noted that this in no way proves the existence of the 
Zones of Proximal Flow, however, it does indicate that students, 
for the most part, had adequate skills to meet their programming 
challenges.  

4.2 Zones of Proximal Flow in a Classroom 
One might wonder if there was a more direct method to indicate 
the existence of the Zones of Proximal Flow. An initial attempt at 
this might involve finding a way to graph student challenges vs. 
student skills. Then, we could compare the student trajectories 
over time, in this challenge vs. skills space, to see if there is any 
resemblance to the Zones of Proximal Flow graph depicted in 
Figure 4. In other words, can we illustrate student skills and 
challenges that progress overtime through Scalable Game Design 
curriculum on the graph of Zones of Proximal Flow?  

We have a method, developed by Koh et al [13], that allows us to 
calculate the “skills” a user shows in a given game creation task 
by looking at the existence and amount of individual 
Computational Thinking Patterns present in that game. This 
method is called Computational Thinking Pattern Analysis 
(CTPA). Computational Thinking Pattern Analysis measures the 
semantic meaning of the games/simulations programmed with 
AgentSheets or AgentCubes [13]. Through CTPA process, a 
student-programmed project can be converted into a holistic 
number per computational thinking pattern to assess student-
learning abilities. 

The Latent Semantic Analysis technique, as applied to CTPA, 
analyzes the implemented computational thinking patterns (CTP) 
in a given AgentSheets/AgentCubes project. CTPA compares a 
specific game/simulation with pre-defined canonical 
Computational Thinking Patterns using an LSA inspired 
technique. To perform CTPA, a given AgentSheets/AgentCubes 
project should be converted and expressed as a vector. The 
interpreted AgentSheets/AgentCubes project vectors are 
calculated with the Equation 1 to show its semantic meaning [13].  

 

Equation 1. Computational Thinking Pattern Analysis 

In this equation, u and v refer to a given project and one canonical 
computational thinking pattern respectively. N corresponds to the 
vector size of a project or Computational Thinking Pattern, and m 
refers to the number of Computational Thinking Patterns that are 
applied to CTPA. The calculated result of CTPA through CTPA 
(1) to CTPA (m) could be represented as an m length vector [13].  

The CTPA calculated values, each element in m length vector, 
indicate student-learning abilities in each computational thinking 
pattern programming level. The length (norm) of this m length 
vector, a numerical value, is interpreted as the student’s skill to 
design/implement a game/simulation. Also, this Skill Score 
equation is used to measure the challenges that students face 
(programming complexity) to program a game/simulation in the 
same manner to assess student-programming abilities. 

Skill Score = 

 

Equation 2. Skill Score 

In the Scalable Game Design project-first approach, students are 
given a challenge, such as a simulation or game, which motivates 
them to gain the skills necessary to accomplish that challenge. 
Given that we can calculate student skills, by looking for the 
presence of Computational Thinking Patterns, we can begin to 
fashion what this challenges vs. skills graph might look like in a 
classroom context. Figure 6 depicts this initial attempt at this 
challenges vs. skills graph.  

 

Figure 6: Student trajectory data resembling the Zones of 
Proximal Flow  

The colored lines in Figure 6 represent five individual student 
trajectories over the course of four games. These five trajectories 
were chosen not because they are indicative of this particular 
class, but rather, they give an initial picture as to how different 
students advanced through the class. The black line in Figure 6 
represents the game students would create if they followed the 
tutorial perfectly. The overlaid colored regions are meant to be a 
very informal representation of Flow, ZPD, and anxiety, and by 
no means imply that we know where the thresholds to these zones 
might exist.  

To the right of the black line, we see a zone wherein students have 
additional Computational Thinking Patterns included in their 
project indicating a possibly more sophisticated game or 
simulation. To the left of the black line we see a zone wherein 
student project do not have all the Computational Thinking 
Patterns necessary to create that particular game or simulation 
present. This area indicates that student did not display all the 
skills necessary to meet the game or simulation authoring 
challenge. The black line, in essence, can be thought of as ‘Flow’ 
where the challenges and the student abilities are exactly matched.  

We currently have no way yet of knowing how wide or narrow the 
Flow zone or the Zone of Proximal Development is in Figure 6. 
We currently speculate that if a graph of a student goes to the left 
side of the Flow line, then the student goes into the Zone of 
Proximal Development or Anxiety zone wherein the student might 
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need outside instruction to complete the challenge. Conversely, if 
a graph of a student goes to the right side of the Flow line, then 
the students has more expertise as compared to the challenge. 
Finally, if a given students progression line is too far to the left of 
the Flow line, we surmise that this might indicate student anxiety. 
If a given student’s line is too far to the right of the Flow line, it 
may indicate student boredom.  

5. DISCUSSION AND CONCLUSION 
The Zones of Proximal Flow graph depicted in Figure 3 combines 
two pedagogical concepts to arrive at a strategy for keeping 
students engaged in classroom activities. This paper is an initial 
attempt to explain a strategy that applies the Zones of Proximal 
Flow theory and begins to present data possibly showing its 
existence. To that end, Figure 5 shows that classes readily tried 
more sophisticated projects indicating classroom engagement.  

Figure 6 is an initial attempt at displaying student trajectories on a 
challenges vs. skills graph. In Figure 6 we see student 
progressions that begin to resemble the graph shown in Figure 3. 
This initial data is relevant to the Zones of Proximal Flow 
existence, however much more research must be done to support 
this theory. Further research needs to investigate where the 
thresholds for Flow, the Zone of Proximal Development, anxiety, 
and boredom lie in this space. Furthermore, this theory should be 
applied to other areas of classroom instruction, possibly providing 
teachers with a means of evaluating themselves or their classes 
giving them cues as to when outside instruction and scaffolding 
are effective and better  

The Zones of Proximal Flow, a combined concept of Flow and the 
Zone of Proximal Development, is designed to promote student 
intrinsic motivation and leverage student learning experience. In 
our previous research, we have described the Zones of Proximal 
Flow as our project approach to broaden participation of minority 
and female students [ref], but it was just a theory. In this paper, 
we have shown early stage empirical data that begins to indicate 
its existence and possible effectiveness. It is our hope that future 
research into the Zones of Proximal Flow will paint clearer picture 
of this space, and be useful not only in the context of end-user 
programming, but have applications and facilitate engaging 
student curricula in a variety of different educational domains. 
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